Extensions 1→N→G→Q→1 with N=C24 and Q=C5×S3

Direct product G=N×Q with N=C24 and Q=C5×S3
dρLabelID
S3×C23×C10240S3xC2^3xC10480,1211

Semidirect products G=N:Q with N=C24 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
C241(C5×S3) = C5×A4⋊D4φ: C5×S3/C5S3 ⊆ Aut C24606C2^4:1(C5xS3)480,1023
C242(C5×S3) = C2×C10×S4φ: C5×S3/C5S3 ⊆ Aut C2460C2^4:2(C5xS3)480,1198
C243(C5×S3) = C5×C22⋊S4φ: C5×S3/C5S3 ⊆ Aut C24406C2^4:3(C5xS3)480,1200
C244(C5×S3) = S3×C24⋊C5φ: C5×S3/S3C5 ⊆ Aut C243010+C2^4:4(C5xS3)480,1196
C245(C5×S3) = C5×C244S3φ: C5×S3/C15C2 ⊆ Aut C24120C2^4:5(C5xS3)480,832
C246(C5×S3) = C2×C10×C3⋊D4φ: C5×S3/C15C2 ⊆ Aut C24240C2^4:6(C5xS3)480,1164

Non-split extensions G=N.Q with N=C24 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
C24.(C5×S3) = C10×A4⋊C4φ: C5×S3/C5S3 ⊆ Aut C24120C2^4.(C5xS3)480,1022
C24.2(C5×S3) = C10×C6.D4φ: C5×S3/C15C2 ⊆ Aut C24240C2^4.2(C5xS3)480,831
C24.3(C5×S3) = Dic3×C22×C10central extension (φ=1)480C2^4.3(C5xS3)480,1163

׿
×
𝔽